LibraryLyna

Tactile Problem/Solution Bank Community Project

Secondary educationLanguages

3D modeling and printing should be accessible to every educator: it provides an affordable alternative to images, offering students tactile means to understand spatial concepts.

Whether it is the creation of models and manipulatives, the conversion of 2D images to 3D tactile objects, or the ability to place Braille on designed objects, 3D printing allows teachers of the visually impaired to have personalized learning aids that empower them to improve the learning experience of their students.

The Tactile/Solution Problem Bank will provide information from individuals who have been working with the visually impaired about how students, educators, and designers can create usable tactile models and use braille in their designs appropriately. It will provide a way for teachers of the visually impaired to share their needs for specific models and for models that help explain specific ideas. The project will also set up a group of evaluators to assess the effectiveness of models submitted and to provide feedback to the designers. Those models that follow the best practice guidelines will be shared on YouMagine and a listing of those models with referral links will be posted on the project page. The models will also be included in an education database. We also encourage educators who use the models to share their experiences. This project is meant to be ongoing, but there will be one milestone of note:  an exhibit of selected models at Construct3D 2018, an academic 3D printing and digital fabrication conference hosted by Georgia Tech on October 5-8, 2018.

Background

I first became aware of the impact 3D printing can have for visually impaired students when I attended a three-day meeting with over fifty library, museum, and school professionals from across the country at the Tech Museum of Innovation in San Jose in June of 2015. The conference was organized by Silicon Valley-based non-profit, Benetech to survey and develop an understanding of the existing efforts connecting 3D printing and education, and to identify ways in which makerspaces and 3D printing resources could transform the educational experience of students with disabilities. The conference built upon DIAGRAM Center’s research into the ways that 3D printing technology could be applied to create accessible educational materials.

While others at the conference had been involved with these issues for years, for me, it was the first time I was exposed to the challenges that teachers of the visually impaired and the visually impaired faced. I’ve always been a visual learner. I had never questioned the approaches my teachers had taken to conveying information in my classes in High School, college, and graduate school, or how I myself had used images to help my own students understand the material in my classes. But during the conference, I met people who were blind or who had difficulty processing visual information. My encounters helped me understand how hard it might be for those with different abilities to learn from charts, graphs, diagrams, maps, photographs, and other images.

It was at the Benetech conference that I met Chelsea Cook, the Virginia Tech graduate who majored in Physics. Chelsea told us about the difficulties that she had in her multivariate calculus class because she couldn’t wrap her mind around some of the equations. Chelsea was lucky that there was a team at the University who were interested in developing technology to assist a visually impaired student who wished to understand the effects of complex mathematical formulas. The team, made up of Christopher Williams, assistant professor of mechanical engineering and engineering education at the  College of Engineering, Austin Amaya, doctoral student of mathematics at the College of Science, Ethan Groves, a junior majoring in computer engineering, and Jacob Moore, a doctoral student in  engineering education at the College of Engineering,  worked to display a wide range of complicated mathematical objects in a tactile way and chose 3D printing as the solution. They created 3D representations of mathematical functions using mathematical modeling and computer aided drafting software, saved the models in STL format, and 3D printed the equations using FFF machines.

With Chelsea’s help, the team identified the common surfaces and the particular surfaces used in class and for homework, and was able to create tactile models that could be carried around and implemented as needed.

Creating interfaces, creating experiences
Watch the video

While Chelsea was certainly helped by the 3D printed models, these same models (which can be explored tactually and provide students with an alternative means to perceiving the content) could also be used to aid the learning of sighted students who have difficulties visualizing abstract geometries from 2D representations.

At the conference, I also met Abigale Stangl, a research assistant and PhD student from the ATLAS Institute at the University of Colorado, who focuses on the design tools that assist people to design for people with visual impairment and their support communities. Abigale demonstrated CraftML, an XML-style markup language for 3D modeling that includes support for Braille text.

Everyone at the conference agreed that there was a need to make educational 3D models more available, discoverable, and usable, however, there were still issues that needed to be addressed.  Aside from the state of the technology and the questions of image and model ownership, a major obstacle was the lack of standards that existed that could be employed when designing or evaluating models. To that end, the conference focused on developing a network of collaborators (educators, students, publishers, accessibility experts, individuals from 3D printing companies, librarians, museum staff, and makerspace members) working to develop standards and create models.

I found the conference amazing and inspiring. Not only did the sessions and interactions shed light on accessibility issues that I had never previously thought of, like which modeling programs support the visually impaired, it was also one of the few conferences I have ever attended where participants left with and stuck to, their plans to continue the process started over the weekend. Working groups actually continued to meet, and ideas continued to be generated.

I can’t say that I was a model contributor, but as I have transitioned through different jobs,  I have maintained a sensitivity to the issues, and when possible, have consistently advocated for supporting accessibility efforts.

My work with Ultimaker has introduced me to Mara Hitner from MatterHackers. Mara has been a long time supporter of using 3D printing to help the visually impaired, and in 2017 she helped establish and run MatterHacker’s Envision The Future Design Challenge, which asked designers to create tactile models “to be used in a classroom for Kindergarten all the way up to Graduate school. It could be an example of architecture, a bust of a historical figure, a math or science learning tool (a.k.a. manipulatives), animals or plant-life, or any of the examples suggested by teachers.” On several occasions, Mara and I have discussed strategies for how we could combine our efforts.

Yet, it wasn’t until Pioneers Rich Lehrer and Vicente Gascó expressed interest in developing separate Community Projects around tactile models that I realized the idea had reached critical mass. Pioneer Rich Lehrer, the Innovation Coordinator at Brookwood School in Massachusetts, proposed creating a Tactile Problem Bank based on his Problem Bank project.

About five years ago, Rich and some of his 8th-grade students engaged in a project to create an assistive device for his three-year-old son, Max, who was born with Amniotic Band Syndrome. It was a transformative project that left Rich looking for more ways to use CAD modeling and 3D printing to teach STEM, design, and problem solving. Rich came up with the idea of a Problem Bank (essentially a website where community members post problems in need of 3D printed solutions), and for the past four years he has been refining his approach, broadening the work he is doing with students, and essentially sharing the idea with other teachers and schools that are looking to provide their kids with authentic learning  experiences. You can see a little more info about some of his work in this EdSurge article and on his website.

Vicente Gascó is a product designer, educator, and entrepreneur who teaches at and directs the Atlantic University College's Fabrication Lab in Puerto Rico. Vicente told me about how over the last eight months he had been working on a 3D printable project that attends to the needs of educating blind or legally-blind children in Puerto Rico. While working with special needs educators and consultants, he learned about the educators’ requirements. He found that many educators he met created their own models with whatever materials they could afford or were available. Vicente was convinced that his expertise, along with the Ultimaker community, could lead to the designing, prototyping, and sharing of many solutions.

There has certainly been a lot of interest around tactile models for the visually impaired. Unfortunately, not all the solutions or examples have been appropriate for their intended audience. To avoid past mistakes, this project wants to educate designers about requirements and working standards, provide challenges that satisfy actual needs, evaluate the solutions based on established criteria, and make the approved solutions easy to find and accessible to the educators who need them.

Now imagine that there is a repository of multimodal educational assets (2D and 3D tactiles, text descriptions, videos, audio recordings, etc). Imagine that this repository is searchable by subject and modality, and all the items in the collection are tagged with metadata. So now, as an educator who is interested in exploring alternative ways to communicate an idea, I don’t have to search a number of sites that may or may not meet my needs. I can look in one place to easily find resources that can help all of my students learn about a particular topic through various modalities or approaches. So whether a student has a disability, or just demonstrates a preference for a different learning style, I can now find and use resources that support and reinforce the learning of each of my students. Recently, when I reconnected with Benetech’s Lisa Wadors, she told me about just such a repository/registry. ImageShare is Benetech’s central platform that allows users to search across multiple collections, using specific search parameters.

After speaking with Lisa and Sue-Ann Ma from Benetech, it became apparent that tactile models can be used as teachable objects for many types of students, and that some models may be more appropriate for different groups of students (differentiated by age, level of understanding, or ability). This idea of layers or gradients completely opens up this community project. Yes a model that benefits the visually impaired student can also help the sighted student with the understanding of a complex idea, and introducing color to the same model may actually provide additional understanding for a low vision or sighted student. Adding mechanisms that allow a model to move may not be suitable for a blind student, but could provide a deeper level of understanding for a sighted student that needs to see the relationships between parts and how one part influences another.

This community project starts with designing tactile models for the visually impaired, but it is also about using design to ensure that teachers have access to educational materials that are accessible regardless of learning styles, physical, or sensory abilities. So if you're not sure that your model is 100% appropriate for a visually impaired student, we still encourage you to submit your solutions if you believe that they can help other students understand a concept, lesson or idea.

This project invites students, educators and designers to:

  • Learn about the best practices for designing tactile objects for the visually impaired.

  • Apply those best practices to designing models that allow visually impaired students to explore specific ideas.

  • Submit designs to be assessed by a team of educators who work with the visually impaired.

  • Add models to Benetech’s ImageShare repository.

The other side of this project encourages educators to request a specific model or a model that explains a specific idea. Educators can use designs that have been submitted and then share how they used them, and if the model contributed to the understanding of the concept being taught. Educators are encouraged to provide feedback, so that the community can customize or modify the models for different audiences or situations.

Inspiration

fixed volume

Fixed volume objects by Whosawhatsis

Here are resources for two models on LibraryLyna that include how-to-use guides:

disk method

Disk method how to guide

6cc triclinic preview featured

The Six crystal families by GeoFabLab

Unit circle

Unit circle with braille
by collegeofthedesert

To find out more, view the project page.

Read more education blogs

    • Naturalis Biodiversity Center: Prehistoric prints, cutting-edge technology

      Naturalis Biodiversity Center: Prehistoric prints, cutting-edge technology

      Naturalis Biodiversity Center, the Netherlands’ national natural history museum, is using 3D printing to create both partial and full dinosaur skeletons for public display.

      • History
      • Informal learning
    • Ultimaker Met

      Bringing 3D printing to the Metropolitan Museum of Art

      Part of the mission from Ultimaker North America's Community team is to help educators get up and running with 3D printing and to help them find meaningful ways to integrate the technology into their curriculum while celebrating their successes. When we w

      • Secondary education
      • History
    • College of the Desert 3D printing club

      Feel the Action: Learn about how a college is changing lives in ways we can touch!

      A 3D printing club emerges at College of the Dessert to help make ideas accessible to all students

      • Special education
      • Technology
    • Testing Quadcopter

      How the tools we use influence the designs we make

      Michael Delaney writes about his iterative process of integrating electronics and 3D printing in his programmable quadcopter project.

      • Informal learning
      • Technology
    • Smithsonian Learning Lab

      3D printing as part of the Smithsonian Learning Lab

      Pioneer Christopher Sweeney shares the work he did with 3D printing and the Smithsonian Learning Lab to create collections of educational resources, organized and structured for teaching and learning.

      • Informal learning
      • Art
    • Harvard calculus courses use 3D printed models to engage students

      Harvard calculus courses use 3D printed models to engage students

      What is the best way to teach concepts like surface area and volume relating to mathematical objects in a three-dimensional world? The curricular design team at Harvard University thinks the...

      • University
      • Mathematics
    • Code your 3D designs with Tinkercad’s new Codeblocks app

      Code your 3D designs with Tinkercad’s new Codeblocks app

      Tinkercad released Codeblocks last June, and now that it's out of Beta, Pioneer Rob Morrill tells us how he uses it.

      • Informal learning
      • Technology
    • Mathematica Tea Light Holder

      3D Design in Mathematica: Tea Light Holders

      If it’s happening in Ultimaker’s world, you can find out about it here. 3D printing stories about inspiring moments, original 3D printed projects and much much more.

      • Informal learning
      • Mathematics
    • printingUltibot

      Modifying an STL with Tinkercad

      When Ultimaker Pioneer Alex Larson contacted me about the Ultibot-D project, I was super excited. As a teacher and parent, I am a huge cheerleader for risk. I printed the base models at ⅕ scale and gave it to my students to explore

      • Primary education
      • Technology
    • Ultimaker at Camp

      Math Camp: Having fun doing stuff

      Pioneer Dr Toni Szymanski writes about summer fun at camp with 4th and 5th graders, math, and 3D printing.

      • Primary education
      • Mathematics
    • 3D printing for glass

      GlitchCraft

      Guest blogger Astrida Valigorsky writes about combining the old and the new at Timothy Belliveau's GlitchCraft class where students combined 3D printing and glass blowing.

      • Informal learning
      • Technology
    • 3D printing in math and chemistry

      A unique 3D printing collaboration between mathematics and chemistry faculty

      Passing it on. After integrating 3D printing into her own math courses, Kristen Schreck helps spread 3D printing across disciplines at Saint Xavier University.

      • University
      • Science
    • basecampProject

      Using Basecamp to manage your classroom/makerspace projects and print queue

      Pioneer Andrew Woodbridge uses Basecamp to organize his students' projects, and he explains how you can too.

      • Secondary education
      • Technology
    • World monument project

      Living world monuments assignment

      Pioneer Joanne Barrett shares about a middle school project that combines 3D printing, Augmented Reality, History, and Art.

      • Secondary education
      • History
    • toni teaching fusion

      Teacher training for 3D printing

      Pioneer Dr. Toni Szymanski thought that 3D printing could engage students in math classes. To test this out, she had to learn all about 3D printing first.

      • Secondary education
      • Mathematics
    • Finland’s mobile libraries

      3D printers in the public library: Finland ahead of the curve

      US Professor Joshua Pearce, sponsored by Fulbright Finland for Research, shares his first impressions of Finnish libraries.

      • Informal learning
      • Technology
    • parts in cura (1)

      My reintroduction to Netfabb

      A recent NetFabb workshop convinced the writer that they can't live without this application. See why it's time to take another look at Netfabb.

      • Secondary education
      • Technology
    • buckeyball

      Modeling rocks at iCREATE

      iCREATE's Tiffany Huang shared an iCREATE success story about Jackie Zheng.

      • Secondary education
      • Science
    • goblet project

      Integrating 3D printing and The Goblet Project

      Pioneer Chris Hanusa shares one way he integrated 3D printing into his Integral Calculus class

      • University
      • Mathematics
    • Happiness

      Lessons in letting go - releasing student energy speeds creation and use of our art and innovation lab

      Pioneer John Nordell enlisted his students to put the Art and Innovation Lab together. The result was one of the best experiences he has had as an educator.

      • University
      • Technology
    • hero wrenchs

      Wrench Engineering

      Inspired by NASA printed in space wrench, Pioneer Rob Morrill gave his fifth graders a design challenge to design their own real-world tool.

      • Primary education
      • Engineering
    • ceramic stamps

      Digital fabrication informs ceramics decorative process

      Pioneer Young Kim blends his classical arts background with digital fabrication to create a ceramic project that incorporates 3D printing.

      • Secondary education
      • Art
    • Empathy map

      Elementary-College Engineering Design partnership

      Pioneer Matthew Wigdahl writes about how his fifth graders and local undergraduate engineering students learn from each other.

      • Primary education
      • Engineering
    • 014-SchoolHero

      Introducing Ultimaker’s Core Lessons Set for STEAM Educators

      Designed by the Ultimaker North America Community Team, our new Core Lessons: STEAM Set is a resource for educators who need inspiration and ideas when they bring 3D printing into their classrooms.

      • Primary education
      • Technology
    • MakerGirl

      Empower one MakerGirl, empower the world

      how the group traveled 10,000 miles around the country to help bring 3D printing workshops to over 1,000 young girls. In this week's post we catch up with the organization that is still working to create a new generation of confident, creative women leade

      • Primary education
      • Technology
    • Georgia Connections Academy

      Building a mobile maker space: part 2—up and rolling

      So what exactly does a Mobile MakerSpace look like? That's the question I had to ask myself once I began the project of bringing 3D printing technology to virtual students. When we started this project, we knew we needed something that would be easy to

      • Secondary education
      • Technology
    • Building a mobile makerspace: part 1— getting started

      Building a mobile makerspace: part 1— getting started

      Pioneer Wendy Aracich is putting together and implementing a mobile MakerSpace for her virtual school of 4000 students spread across the state of Georgia.

      • Secondary education
      • Technology
    • coca cola upcycle

      Upcycling community project

      Upcycling challenges students and educators to use their creativity and 3D printing skills to breathe new life into a few familiar objects.

      • Informal learning
      • Technology
    • LibraryLyna

      Tactile Problem/Solution Bank Community Project

      3D modeling and printing should be accessible of every educator so that they may offer their students tactile means to understand spatial concepts.

      • Secondary education
      • Languages
    • pecha-kuchas

      Construct3D to Kamehameha Ed Tech Conference

      Last year Pioneer Greg Kent traveled from Hawaii to North Carolina to attend Construct3D 2017. We thought we'd share his reflections with you now since we recently announced Construct3D 2018

      • Secondary education
      • Technology
    • Plastic Ocean by Kevin Krejci

      Ocean Plastic Community Project

      The Ultimaker Community Team will be launching a series of interdisciplinary projects over the next few months that challenge students to research, explore, design, and 3D print. Ocean Plastic is the first project of this series.

      • Secondary education
      • Geography
    • Design Engine Box

      Design Engine community project

      We want to challenge educators and students to help evolve the Design Engine game. We want to see how you're using or modifying the game with your students, and we want to incorporate your ideas into the next edition.

      • Informal learning
      • Technology
    • Drone1

      Using drones and 3D printing to develop design thinking during a summer robotics camp

      Pioneer Yuriy Drubinskiy writes about his experience leading a summer program and how creating drones with 3D printing brings form, structure, and design together.

      • Secondary education
      • Technology
    • fractal2

      3D printed fractals at JMU 3SPACE

      Pioneer Professor Laura Taalman, (a.k.a. mathgrrl), reviews a multi-week study of fractals by general education math students in the JMU 3D printing classroom.

      • University
      • Mathematics
    • The Starter Pack launch event at Digital Harbor Foundation

      Introducing the Ultimaker Design Engine Starter Pack

      Presenting the Ultimaker Design Engine Starter Pack: a game created to provoke, inspire, and entertain students, educators, 3D designers, artists, and engineers of all experience levels!

      • Informal learning
      • Technology
    • first puzzle cube and package to be made on a 3D printer entirely out of PLA

      Davidson Desktop Doohickeys: Puzzle cubes

      Pioneer Adam Davidson writes about a project in his curriculum that is a rite of passage for his high school's engineering program students. He explains at how it started and what caused it to change

      • Secondary education
      • Engineering
    • soft robot mold

      3D printing with UMaine Bioengineering students

      If it’s happening in Ultimaker’s world, you can find out about it here. 3D printing stories about inspiring moments, original 3D printed projects and much much more.

      • University
      • Science
    • Star Wars and STEAM

      3D printing, Arduino, and Star Wars: A guide to K-12 STEAM engagement

      If it’s happening in Ultimaker’s world, you can find out about it here. 3D printing stories about inspiring moments, original 3D printed projects and much much more.

      • Secondary education
      • Technology
    • Cam-ball-launcher

      Nautilus cam ball launcher

      Design process is about discovery through iteration. Pioneer Brad Whitehead describes how his FTC robotics team learned this while working on a unique ball launcher.

      • Special education
      • Technology
    • 3D-printed molecules

      3D printable molecular models

      Tandy Grubbs, Professor of Chemistry, writes about how chemistry students at Stetson University are taking advantage of 3D printing to better visualize the molecular world.

      • University
      • Science
    • animal adaptations

      Animal Adaptations

      If it’s happening in Ultimaker’s world, you can find out about it here. 3D printing stories about inspiring moments, original 3D printed projects and much much more.

      • Primary education
      • Technology
    • Launching water rockets

      3D water rockets

      Pioneer Tim Cooper explains what to do with a First Lego League team in the off season when they love rockets and 3D printing.

      • Primary education
      • Science
    • Three reasons for open source tech in your 3D printing classroom

      Three reasons for open source tech in your 3D printing classroom

      Pioneer Joshua Pearce explains why educators should consider using free and open source options in and out of the 3D printing classroom.

      • University
      • Technology
    • 3D printing artifacts

      3D printing artifacts from the Penn Museum

      The chance to hold a 3D printed historical artifact in our hands is one of the greatest ways to boost students' engagement with science, engineering, and culture. Learn how challenging and exciting it can really be.

      • Secondary education
      • History
    • UTEP Lab

      Managing an open 3D printing lab

      What’s it like to be a student administrator for a 3D printing lab space? What kind of knowledge and experiences could you offer to students at your own school by hiring them for such position?

      • University
      • Engineering
    • 3D printing in the classroom

      Why I use 3D printing in the classroom (and why you should too!)

      While 3D printing is not new to designers, engineers and other professionals in need of rapid prototyping tools, it is still a new and exciting technology for our students. Pioneer Grace Bennett shares why teachers should get started with 3D printing.

      • Secondary education
      • Technology
    • 3D printed whistles

      Thinking about the environment

      The learning curve associated with 3D printing can produce a lot of 3D printed waste. It's time to start exploring and thinking about more sustainable options.

      • Informal learning
      • Geography
    • 3D printed Cryptex puzzle

      #1 reason to love math: 3D printed puzzles

      Pioneer Andreas Kaiser writes about the power of puzzles in the classroom and how recreating or designing puzzles is a perfect fit for his engineering students.

      • Secondary education
      • Mathematics
    • 3D printing in Multivariable Calculus

      Our 3D printing journey in Multivariable Calculus

      Here’s a story of the next generation of 3D printing pioneers exploring the 3D printing technology in Multivariable Calculus with the Ultimaker 2+.

      • University
      • Mathematics